Novel Building Block, Furan-annelated 3-Sulpholene; Diels-Alder Reactions of 4,6-Dihydrothieno[3,4-c]furan S,S-Dioxide

Takayoshi Suzuki, Kan Kubomura, Hideyuki Fuchii and Hiroaki Takayama*

Faculty of Pharmaceutical Sciences, Teikyo University Sagamiko, Kanagawa 199-01, Japan

The preparation of the hitherto unknown 4,6-dihydrothieno[3,4-c]furan S,S-dioxide 1 and its intermolecular Diels-Alder reactions with typical dienophiles are described.

In the course of our studies on the chemistry of 2,5-dihydro-thiophene S,S-dioxide (3-sulpholene),¹ we synthesized the previously unknown furan-annelated 3-sulpholene 1, the precursor of the furan analogue of o-quinodimethane.² This compound 1 contains furan and 3-sulpholene moieties, both of which are readily functionalized, and so it would be expected that it could be used as a bis-diene which can sequentially react with two different kinds of dienophiles (tandem Diels-Alder reaction). Such a sequence is useful in the syntheses of variously substituted multicyclic molecules.

Compound 1 was synthesized as described in Scheme 1. The bromination of 3,4-dimethylsulpholene 2 with N-bromosuccinimide (NBS) gave the dibromide 3 (54%),3 which on hydrolysis with silver trifluoroacetate in water afforded the diol 4 (m.p. 93–95.5 °C; 93%); furan-forming reactions of 4 were attempted under various conditions, but without success.4 The desired furansulpholene 1 (m.p. 139–140 °C; 72%),† however, was obtained on treatment with pyridinium chlorochromate (PCC) in the presence of trifluoroacetic acid.

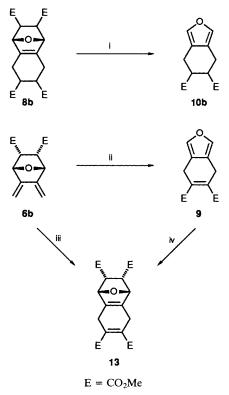
chlorochromate (PCC) in the presence of trifluoroacetic acid.

The Diels-Alder reaction of 1 with dimethyl acetylenedicar-

† ¹H NMR (CDCl₃; SiMe₄) & 4.16 (4H, d, *J* 1.5 Hz) and 7.45 (2H, t, *J* 1.5 Hz); ¹³C NMR (CDCl₃; SiMe₄); & 51.2 (t), 116.5 (s) and 137.4 (d); IR (CHCl₃); v/cm⁻¹ 1305, 1115, 1015 and 880 cm⁻¹; *m/z* 158 (M⁺) and 94 (M⁺ – SO₂).

boxylate (DMAD; 3 equiv.) was carried out at 150 °C for 1 h (benzene; sealed tube), affording two types of cycloadducts: the monocycloadduct 5 bearing two methylene groups [(type A), 45%, cycloaddition to furan moiety and then desulphonylation] and the biscycloadduct 7 [(type B), 47%, cycloaddition to both furan and sulpholene, tandem cycloadduct] (Table 1, entry 1). Even at lower temperatures (120 °C; room temperature) the same cycloadducts were obtained (entries 2 and 3). Essentially the same type of reaction was observed with dimethyl fumarate as dienophile (entries 4 and 5). With other ethylenic dienophiles such as dimethyl maleate, cycloaddition proceeded at 150 °C, making it possible to isolate a new type of monocycloadduct 10b [(type C), 10%, formal cycloaddition to sulpholene moiety, i.e. the retroreversion of 8b] in addition to

Scheme 1 Reagents and conditions: i, NBS, CHCl₃, reflux, 17 h; ii, CF₃CO₂Ag, H₂O, room temp., 72 h; iii, PCC, CF₃CO₂H, CH₂Cl₂, room temp., 30 min


Table 1 Reactions of furansulpholene 1 with dienophiles

Entry	Dienophile (3 equiv.)	Reaction conditions ^a (sealed tube)	Products (yield, %) ^b				Total
			Type A	Туре В	Type C	Type D	yield ^c (%)
1	DMAD	150°C, 1 h	5 (45)	7 (47)			92
2	DMAD	120°C, 1 h	5 (62)	7 (29)			91
3	DMAD	R.t., 168 h	5 (54)	7 (39)			93
4	Dimethyl fumarate	150 °C, 2 h	6a (61)	8a (26)			87
5	Dimethyl fumarate	120°C, 4 h	6a (78)	8a (11)			89
6	Dimethyl maleate	150 °C, 3 h	6b (endo 53) (exo 10)	` ,	10b (10)		73
7	Dimethyl maleate	120°C, 12 h	6b (endo 51) (exo 10)	8b (endo 11) (exo 18)			90
8	Fumaronitrile	150°C, 3 h	6c (36)	,	10c (38)		74
9	N-Phenylmaleimide	150°C, 3 h	6d (exo 46)		10d (26)		72
10	N-Phenylmaleimide	120 °C, 1 h	, ,	8d (exo 72)	,		72
11	N-Phenylmaleimide	150°C, 4 h	6e (exo 58)	` ′	10e (4)		62
12	Maleic anhydride	R.t., 72 h	` '			12f (exo 62)	62

^a Each reaction stopped on consumption of the starting material 1. R.t. = room temperature. ^b Isolated yields. ^c The reaction conditions were not optimized.

the type A monocycloadduct **6b** (entries 6 and 7). With fumaronitrile, the formation of the type C adduct **10c** (38%) predominated over that of type A **6c** (entry 8). Furthermore, **1** added to maleic anhydride at room temperature for 72 h to yield a single product, the fourth type of cycloadduct (**12f**) [(type D), *exo*, 62%, cycloaddition to furan moiety] (entry 12). The structures of all the new compounds thus obtained were confirmed by ¹H and ¹³C NMR spectral data.

Thus, 1 reacts with various dienophiles to give four types of cycloadduct, A, B, C and D, depending on the dienophile and the reaction conditions, and even reacts with dimethyl maleate and dimethyl furmarate, whose adducts with furan have not been isolated under thermal conditions,⁵ to afford Diels-Alder adducts. The formation of type A compounds, 5 and 6, is the result of spontaneous desulphonylation of initially formed type D adducts, 11 and 12, respectively. Despite the success in the isolation of 12, all attempts to detect 11 failed owing to rapid desulphonylation (e.g. entry 3), but the isolation of a 1:1 adduct X‡ of 11 with 1 suggested the

Scheme 2 Reagent and conditions: i, benzene, 150 °C, 1 h; ii, DMAD, benzene, 150 °C, 3 h; iii, DMAD, 12 kbar, 28 °C, 48 h; iv, benzene, 150 °C, 1 h

 $[\]ddagger$ M.p. 160–161 °C (decomp.); ¹H NMR (CD₃SOCD₃; SiMe₄) δ 3.60 (6H, s), 3.77 (4H, m), 4.10 (4H, m), 5.09 (2H, s) and 5.38 (2H, s); ¹³C NMR (CDSOCD₃; SiMe₄) δ 52.53 (q), 56.15 (t), 56.53 (t), 69.35 (s), 79.06 (d), 82.68 (d), 139.84 (s), 144.78 (s) and 170.56 (s); m/z; 330 (M+ - 2 \times SO₂), 299 (330 - OCH₃) and 271 (330 - CO₂CH₃). This adduct has structure **X** (unpublished data).

formation of 11. In this rapid desulphonylation, the extra strain (which is attributed to two 'endocyclic alkene-oxabridge' repulsions⁶) of the oxanorbornadiene moiety of 11 plays an important role. Furthermore, the formation of the type C adduct at 150 °C can be explained by a retro-Diels-Alder reaction where the 7-oxanorbornene skeleton of the type B adduct 8 releases the unit alkene to afford furan owing to the restoration of aromatic character and the reduction of steric strain. 7 Compound endo-8b, when kept at 150 °C for 1 h, gave the type C adduct 10b (36%) and endo-6b reacted with DMAD at the same temperature for 3 h to afford 9 (84%) which could not be isolated on treatment of 1 with DMAD (Scheme 2). These results suggested the formation of the 7-oxanorbornene system 13\geq by the process shown in Scheme 2. Indeed, 13 underwent retro Diels-Alder reaction to give 9 in quantitative yield.

Received, 31st July 1990; Com. 0/03520C

§ This compound was prepared from *endo-6b* and DMAD under 12 kbar pressure (CH₂Cl₂; 28 °C; 48 h; yield 98%) (unpublished data).

References

- S. Yamada, T. Suzuki, H. Takayama, K. Miyamoto, I. Matunaga and Y. Nawata, J. Org. Chem., 1983, 48, 3483; S. Yamada, H. Ohsawa, T. Suzuki and H. Takayama, Chem. Lett., 1983, 1003; J. Org. Chem., 1986, 51, 4934; H. Takayama and T. Suzuki, J. Chem. Soc., Chem. Commun., 1988, 1044; S. Yamada and H. Takayama, Yuki Gosei Kagaku Kyokai Shi (J. Synth. Org. Chem. Jpn.), 1988, 46, 893.
- J. Jullien, J. M. Pechine and J. J. Piade, Tetrahedron Lett., 1979, 3079; D. J. Chadwick, A. Plant, Tetrahedron Lett., 1987, 28, 6085; P. M. S. Chauhan, G. Jenkins, S. M. Walker and R. C. Storr, Tetrahedron Lett., 1988, 29, 117; A. M. van Leusen and K. J. van den Berg, Tetrahedron Lett., 1988, 29, 2689; S. F. Vice, H. N. Carvalho, N. G. Taylor and G. I. Dmitrienko, Tetrahedron Lett., 1989, 30, 7289; K. J. Stone, M. M. Greenberg, S. C. Blackstock and J. A. Berson, J. Am. Chem. Soc., 1989, 111, 3659.
- 3 G. B. Buther and R. M. Ottenbrite, Tetrahedron Lett., 1967, 4873.
- 4 For example, treatment of the diol 4 with PCC (acetone-CH₂Cl₂; room temp.) resulted in the hemiacetal (K. Itoh, *Chem. Lett.*, 1981, 1363).
- 5 They are reported to be unsuitable for the Diels-Alder reaction of furan: T. A. Eggelte, H. De. Koning and H. O. Huisman, Tetrahedron, 1973, 29, 2491; J. Jolivet, Ann. Chim., 1960, 5, 1165.
- 6 W. H. Watson, J. Galloy, P. D. Bartlett and A. A. M. Roof, J. Am. Chem. Soc., 1981, 103, 2022; O. Pilet and P. Vogel, Helv. Chim. Acta, 1981, 64, 2563; P. Vioget, M. Bonivento, R. Roulet and P. Vogel, Helv. Chim. Acta, 1984, 67, 1630.
- 7 W. G. Dauben and H. O. Krabbenhoft, J. Am. Chem. Soc., 1976, 98, 1992.